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ABSTRACT 

Relationships describing the dependence of the height equivalent to a theoretical plate (HETP) on 
the linear velocity u contain a term that is traditionally called the eddy dispersion term. In some theories, 

this term is independent of velocity, in others it results in a curved relationship with velocity. Both have 
been observed experimentally. In this paper, we advocate a theory which is capable ofexplaining both. This 
theory is based on the mass-transfer between sections of the mobile phase that move at different velocities. 
The equation obtained is formally identical to the equation derived by Giddings. However, the meaning of 
the coefficients in both theories is different. In our approach, the coefficients are related to structural 
parameters of the packed bed and can be assessed quantitatively. This is helpful in the interpretation of 
eddy dispersion terms obtained in column packing experiments. 

The mathematical approach used here allows the calculation of all moments of the peak and there- 
fore a prediction of the peak-shape. Although a relationship exists between structural parameters of the 
packed bed and the experimental observations of peak width and peak symmetry, this relationship can 
only be expressed in the form of the product of velocity difference with a characteristic distance. This term 
cannot be deconvoluted further. Thus, large velocity differences over small distances result in the same 
peak-width and -shape as small velocity differences over large distances. 

INTRODUCTION 

Klinkenberg and Sjenitzer [l] and Van Deemter et al. [2] first introduced an 
equation for the relationship between band-spreading and linear velocity, which 
contains a term which was called eddy dispersion. In their theory, this term is 
independent of velocity. Subsequent treatments adopted this term and related it to the 
non-uniformity of the packed bed. Giddings [3] postulated, that some of the terms 
related to flow-path non-uniformities couple with mass-transfer terms originating in 
the same type of non-uniformities. These coupled terms result in a curved relationship 
with velocity. Kennedy and Knox [4] approximated the Giddings equation with a term 
containing the third root of the velocity. 

It has been argued [5], that the origin of the coupling postulated by Giddings lies 
in the relaxation of radial concentration gradients by the combined effect of diffusion 
and eddy dispersion. This is precisely the model which is used in the quantitative 
theoretical treatment which follows. 

BACKGROUND 

The propagation of a solute in a liquid flowing through a capillary was first 
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considered in the famous works of Aris [6] and Taylor [7]. They found that the band 
width depends on the diffusion coefficient of the solute, the flow profile and the 
flow-rate. The result is the diffusion equation (l), which describes the change of the 
average concentration, C, of a species as a function of the longitudinal coordinate 
x and the time t. Averaging was done over the cross-section of the capillary. 

(1) 

Here, v is the average linear velocity of the liquid and D is an analogue of the diffusion 
coefficient. This coefficient is often called the effective diffusion coefficient and 
sometimes the dispersion coefficient. 

In laminar flow regimes the expression for this coefficient is as follows 

Here, Dmol is the molecular diffusion coefficient, rc is the radius of the capillary and c is 
a constant which depends on the flow profile. For laminar flow in a circular capillary 
the value of the constant c is l/48. This effective diffusion coefficient is closely related 
to h, the reduced plate height, which is the parameter commonly used in chromato- 

graphy. 

It is important to note, that the deduction of the eqns. 1 and 2 assumes that the 
time of peak propagation is sufficiently large. The result of this “long” peak 
propagation is that the shape of the peak becomes completely symmetrical. Such peaks 
are called Gaussian peaks. 

Golay [8] has generalized the deduction of Aris and Taylor to the case in which 
the surface layer of the capillary has retentive properties. In this case, sample molecules 
spend some time in the boundary layer thus causing a delay of the peak in the capillary 
and some additional band spreading. In general, the form of the equation which 
describes the evolution of the concentration profile remains the same as in the case of 
no retention. In other words, chromatography in long capillaries always yields 
symmetrical peaks. The work of Golay is a cornerstone of the theory of chromato- 
graphy, which has been refined since by a large number of researchers [9,10]. 

The phenomena observed in a capillary are also encountered in a packed bed. 
However additional complications arise from the structural properties of the packed 
bed. These structural properties give rise to additional terms in the relationship of 
band-broadening and flow velocity. They can also be the cause of peak asymmetry. In 
the theory developed below, both effects are explained on the basis of the propagation 
of the sample band under equilibrium conditions in a packed bed with non-uniformi- 
ties on the micro-scale. In this context the prefix “micro” means that the scale is in the 
range of a few particle diameters. 
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It is proper to point out, that the results of this work are applicable not only to 
packed beds, but also to any other porous media, since no assumption is made on the 
particular inner geometry of the medium. Nevertheless, for the sake of consistency we 
will refer to the medium as a packed bed. 

STATEMENT OF THE MODEL 

Let us suppose, for simplicity, that our packed bed consists of two component 
phases in which the migration velocity of the peak is different. Segments with different 
interstitial porosities or particles with different particle porosities or surface chemistry 
could cause this effect. The parameters of these phases are denoted by the indices 1 and 
2. Each of them will be considered as a continuum. Let vg and D, be respectively the 
average linear velocity and coefficient of effective diffusion of a solute in the segments 
with the index /I (/I can take the values 1 or 2). Also suppose, that these phases are 
evenly mixed. A clear and simple example of such a mixture might be a structure, where 
flat layers of these phases alternate and the column axis is parallel to these layers. Let 6, 
be the thickness of these layers. 

It is important to remember, that vB and D, are not just flow velocities and 
molecular diffusion coefficients, but are rather the peak propagation velocities and 
effective dispersion coefficients (which are, generally speaking, a function of the 
velocities vs). The tensor nature of the diffusion coefficients is apparent from the 
difference between the components of these tensors in the direction of the respective 
velocities and the components in the directions orthogonal to the velocities. Denote C, 
the concentration of the sample in each phase and 1 the mass transfer coefficient 
between these phases. The system of equations describing the band propagation in 
such a medium may be written as follows 

;c1 + V,~Cl = D,$Cl + ic,(Cz - Cl) 

$2 + v&* = D&C2 + KZ(C1 - c,> 

If the volume fractions of the phases are cur and a2 then 

a1 + a2 = 1 (5) 

A 1 
lcl =- lc2 = - 

@l a2 

Eqns. 3 and 4 are one-dimensional and have the same nature as eqn. 1, The coefficients 
D1 and D2 are just the longitudinal components of the corresponding effective 
diffusion tensors. Cross-sectional mixing is taken into account by adding the 
mass-transfer terms to the system of equations. The mass-transfer coefficient 2 can be 
derived from the effective diffusion coefficients in the direction across the column 
(which generally speaking are different for the two components because they are 
functions of the velocities v1 and v2). 
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MASS-TRANSFER COEFFICIENT 

Let C* be the concentration of the sample at the interface between these two 
phases. The mass flux of the sample from the first phase to the second is 

F = &ad ,;cc1 - c*> (7) 
1 

Here, Drad, is the effective diffusion coefficient in the first phase in the radial direction 
and S is the interface area per unit of column volume. 

On the other hand 

F = &ad *$c* - Cd (8) 
2 

and 

F = ;l(C1 - C,) (9) 

Eliminating F and C* from the eqns. 7, 8 and 9 one obtains the expression for the 
mass-transfer coefficient ;1 

(10) 

To estimate the mass-transfer coefficient ;1 one must first derive the effective 
coefficients of the radial diffusion. In a packed bed, this type of diffusion is a sum of 
essentially two terms. One is related to molecular diffusion and the second is caused by 
the branching of the flow-paths on the micro-scale. From the dimensional analysis the 
expression is of the following form 

In this expression the interstitial velocity of the flow w is usually used instead of the 
peak propagation velocity V. The ratio of these velocities is w/v = 1 + k”. k” is called 
the zone capacity factor [9]. k” is equal to zero for samples which do not penetrate the 
particles and are not retained on the surface of the particles. 

The dimensionless constant B contains the obstruction factors for molecular 
diffusion in the packed bed and in the particle combined with a factor for the ratio of 
the pore volume to the interstitial volume. 

The dimensionless quantity A may also be a function of the dimensionless 
velocity rw/D,,, (at least the dimensional analysis creates no obstacle for such 
a dependence). In the literature [ 11,121 a constant value has been accepted for this term. 
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For further estimations we simplify the expression 10 via the following two 
hypotheses: 

D rad, - - Drad, s = (6, : 6,) 

The second expression might be obtained for specific structures, when the phases are 
stretched along the column and evenly distributed over the cross section. A chess board 
structure (in the cross section of the column) might be a good example here. The 
constant a is a dimensionless constant, which is proportional to the number of 
interphase surfaces passing through the unit area of the cross section of the column. In 
this case one can get the following expression for I 

a(BD,,1 + 2Arw) 

L = (6, :dlyDrad = (6, + SJ2(l + k”) 
(104 

EQUATION FOR THE AVERAGE CONCENTRATION 

In practice, the only measurable quantity is the average concentration C. 

c E Clorl + C2a2 

Hence, it is suitable to transform the eqns. 3 and 4 into the form where C is one of the 
dependent variables. As a coupled variable, the difference A between concentrations 
Ci and C2 might be chosen 

A = C2 - Ci 

At equilibrium, this number becomes much smaller than the average concentration 
C and in the limit approaches zero. In this way, the value of A is the indicator of the 
closeness to the state of equilibrium. 

It is easy to see that 

C, = C - Ac12 C2 = C + Au, (11) 

To derive the equation for C one can multiply the eqns. 3 and 4 by ai and a2, 
respectively, add the results, and substitute then C, and C2 by the expressions 11. 

;C+v&=D$C-( vz - vi&A + (D2 - D&A (12) 

Here, v is the average velocity 

v = v1’21 + v2a2 
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and D is the average effective longitudinal diffusion coefficient 

D = Dlcrl + D2az 

Subtracting eqns. 4 and 3 and substituting the expressions 11 and 12 one can get the 
equation for A 

= - (v2 - v,)&C + (02 - D,)$C (13) 

EQUATIONS FOR THE MOMENTS 

Further analysis of the system of eqns. 12 and 13, is facilitated by rewriting this 
system in the frame moving along the axis x with the velocity v. If v is the peak 
migration velocity, then all the moments of C in this coordinate system will 
automatically be central. 

The corresponding equations are as follows 

;C - D$C = - (v2 - v&A + (D2 - D,),o (14) 

;A + (vz - VI)(CQ - c&A - (D~c(I + D,a,)$A + A(rcz + q) = 

= - (v2 - v&$ + (Dz - D,)m$c: (15) 

By definition, the nth moment of functions C(t,x) and A(t,x) are 

M,,(t) = +fmx”C(t,x)dx N,(t) = +fmx”A(t,x)dx 
-* -00 

Let at the initial time C(O,x) = 6(x) and A(O,x) = 0. 

Multiplying the eqns. 14 and 15 by x” and integrating them (by parts, where it is 
necessary) one can get 

$4. = Dn(n - l)M,-, + ( v2 - v&S,-r + (D2 - Dl)n(n - l)N,-2 

v2 - vl)(al - cQzN,-1 + (Dza1 + D1a2)n(n - l)Nn-2 (16) 

- N,,(K, + ~1) + (~2 - v&M,-, + (02 - DJn(n - l)M-2 
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It was taken into account that N_ 2 = N_ i = Me2 = M_ I = 0 and the limits of the 
expressions like x”C(t,x) and x”(t,x) are equal to zero in the limit x + co. 

We can now proceed to calculate step by step the moments of the peak. The 
second moment is a measure of the peak-width, and the third moment is a measure of 
the asymmetry of the peak. 

The procedure for the solution of this system of equations is merely a recursion. 
Asymptotically for t -+ co one can get the solution for the first four moments of the 
average concentration (the most important from a practical standpoint). How fast 
these values are reached (or in other words how quickly the equilibrium state is 
reached) depends only on the constant l/a1a2. The larger this constant is, the faster this 
system reaches the state of equilibrium. 

The zeroth moment has the meaning of the total sample mass in the system. For 
normalization it is set to Me = 1. 

The first moment M1 is the coordinate of the center of gravity of the peak. It is 
easy to show that M1 = 0. This means that the velocity of the band (in the moving 
coordinate system) is zero. Hence, v is indeed the peak migration velocity. 

The second moment 

53v2 - Vi)’ 1 t 

may be interpreted as the action of some effective diffusion, equal to 

Deff = D + 
%~2(V2 - vd2 

I 

As soon as the velocity difference is not zero, the new effective diffusion Deff differs 
from D. The consequences of such a difference are discussed later. 

The last moment to be considered here is MS. This moment serves as a measure 
of the asymmetry of the peak. 

It is clear now, that the magnitude and the sign of the third moment (and 
consequently the degree of tailing or fronting of the peak) is not automatically zero. 
The skewness c1 is a dimensionless measure of asymmetry and is defined as M3/Mz’2. 

The skewness is approaching zero with l/J?. Hence, after a sufficiently long time the 
peak always becomes symmetrical. The significance of the asymmetry effect is 
determined solely by the relation between the second and the third moments, which in 
turn is a function of time. 

NUMERICAL ESTIMATIONS 

For comparison with other equations commonly used in chromatography, the 
model presented here should be translated into the nomenclature of chromatography. 
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As it was mentioned in the introduction, h = D,ffjrv. Substituting the expressions for 
the effective diffusion coefficient and the mass-transfer coefficient 2 one obtains 

h=i+ 
4alazw2S2wr 

a(BD,,, + 2Arw) 
(17) 

Here the following abbreviations have been used: 

d2 = (62 + w2 

4r2 

w2 = @I~Z(VZ - VII2 

V2 

6 is the characteristic size of the non-uniformity (in non-dimensional form) and o is 
a measure of the velocity variation. With the Peclet number Pe = 2wr/D,,, the eqn. 17 
can be expressed in non-dimensional form 

h = g + C*Pe + 
EPe 

(18) 

The first and second terms in eqn. 18 are nothing but the effect of molecular diffusion 
and mass-transfer in the two phases considered. The form of this equation is identical 
to the coupling equation derived by Giddings [3]. The coefficient E is defined as 

202h2 
E=- 

aA 

This coefficient contains all assumed non-uniformities, i.e. the velocity ratio in the two 
phases, the characteristic size of the phases, their volume fractions and their 
characteristic contact area. 

When Pe is large compared to the ratio B/A in the denominator of the last term 
of eqn. 18 then this term becomes constant. Therefore it is interesting to estimate the 
order of the ratio B/A. If one accepts the value of 0.75 as a typical obstruction factor for 
molecular diffusion, then B z 0.75 for a bed prepared from non-porous particles and 
B zz 1.5 for a bed packed with fully porous particles. In the literature [9], the factor A is 
given as A = 0.278(1 -s)i”, where E is the interstitial porosity. For a typical column 
E z 0.4 and consequently A z 0.215. The ratio B/A then becomes about 3.5 for 
non-porous particles and 7 for porous particles. 

Typical coefficients B* and C* for a column packed with a well-designed fully 
porous chromatographic adsorbent are B* z 3 and C* z l/12. Therefore the point at 
which the terms in Pe and l/Pe of eqn. 18 are equal is at Pe c 6. Consequently the 
curvature of these two terms intermingles with the curvature of the term derived in this 
paper and the minimum of the h(Pe) relationship becomes a function of the term E. 

There are two equations commonly used in the chromatographic literature to 
describe the observed relationship between dispersion and velocity. The older one was 
first derived by van Deemter et al. [2] and is given here in dimensionless form: 

h(Pe) = A* + g + C*Pe 
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The second one was first given by Knox and Parcher [13]: 

h(Pe) = A*Pe: + g + C*Pe 

In both equations the A* term is an empirical descriptor of the quality of the packed 
bed (eddy diffusion). As above, the B* term describes molecular diffusion in the 
direction of flow and the C* term incorporates all mass-transfer phenomena. It can be 
shown, that the model 18 yields curves which are indistinguishable from both 
equations and thus serves as an explanation of the empirical terms with A*, and our 
constant E corresponds to the constant A*. 

This constant can be obtained experimentally and can be used to estimate the 
magnitude of the velocity fluctuations w over the size of the non-uniformities 6. 

(19) 

This relationship is obviously indeterminate, i.e. within the context of the model it is 
impossible to tell whether a particular value of E determined by experiment is caused 
by large velocity fluctuations over a small distance or by small velocity fluctuations 
over a large distance. It can only be said that at the averaging scale 6 the average 
fluctuation o of the velocity does not exceed a value given by the square-root in eqn. 
19. This “uncertainty principle” should be considered in attempts to understand the 
internal structure of a packed bed based on experimental data of dispersion as 
a function of velocity. 

SYMBOLS 

average concentration of the solute 
average linear velocity of the liquid 
peak migration velocity 
molecular diffusion coefficient 
radius of the capillary 
reduced plate height 
average linear velocity of a solute in the continua with the index fi (/I can take 
the values 1 or 2) 
coefficient of effective diffusion of a solute in the continua with the index /I 
characteristic size of the continua with the index b 
volume fraction of the continua with the index j3 
mass transfer coefficient between these phases 
effective diffusion coefficient in the radial direction 
interface area per unit of column volume 
zone capacity factor 
difference between concentrations C, and CZ 
average coefficient of the effective longitudinal diffusion 
nth central moment of a function C(t,x) 
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N. nth central moment of a function D(t,x) 
D eff effective diffusion coefficient 
6 non-dimensional characteristic size of the non-uniformity 
0 non-dimensional measure of the velocity variation 
Pe Peclet number 
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